
Service Oriented Architecture

• SOA is the best practce for building distributed
interconnected systems

– Using well-defned interactons between systems

– Moving from proprietary formats to open formats:
• XML, HTTP, SOAP

– Integraton is dependent on external interfaces not on
internal code

Bus concept

Busbar

A common ESB defniton

“Any to any data connectvity and transformaton
(including Web Services) built on an advanced,
proven, reliable middleware infrastructure”

ESB defniton

“Any to any data connectvity and transformaton
(including Web Services) built on an advanced,
proven, reliable middleware infrastructure”

which means
• Our existng middleware re-branded as an SOA

platorm, with some new web services adapters at
the edges

Jason Bloomberg, Zapthink

“You're a sofware vendor with a product line chock full
of proprietary, tghtly-coupled integraton middleware…

Your sofware, however, does not lend itself to SOA best
practces – loose coupling, composable Services, and
fexibility in general are all capabilites that you failed to
b u i l d i n t o y o u r s o f w a r e …
What to do? The only opton is to slap Web Services
interfaces on your stuf, call it an Enterprise Service Bus
(ESB), and sell it as SOA middleware. Hopefully your
customers won't notce the old wine in new botles. Afer
all, that's what marketng is for!”

My defniton of an ESB

“What does it do?” not “How does it do it?”
• Services are independent of the transport and protocol

used to access them
• Monitors and manages services with minimal intrusion
• Transforms and mediates messages

Loose Coupling

• Locaton and Access
– Scale up, failover, contngency

• Programming Language
– Work with available skills
– Integrate old and new

• Stack/Vendor
– No te in to a partcular proprietary soluton

• Time
– Asynchronous interactons avoid gridlock

Do you need an ESB to do SOA?

Do you need an ESB to do SOA?

SOA can end up as spaghet

• Too many point-to-point links
• Multple protocols, diferent qualites of service
• No clear picture of all available services

An ESB can simplify SOA deployment

Integrated
Registry/

Repository

Web-based console

Virtualization
Perf Mgmt
•Load balance
•Throttle
Transport
 matching
Access control
Message
 transform
Logging and
 auditability

Pragmatc SOA scenarios

• SOA has been seeded “botom-up” within a company, and now
looking for a way to add order and consistency

• Looking to expose existng backend systems as services in a
consistent way

• Need to provide scale-up and performance management for
SOAP and HTTP systems including load-balancing and throtling

• Startng to expose services to partners and require a soluton to
managing access control, security keys and auditability

• Integratng Java and .NET systems with other stacks, need a
simple independent way to manage WS-Security, Reliable
Messaging

Apply those rules to an ESB

• Locaton and Access
– Must provide virtualizaton, multple protocol support, transparency

• Programming Language
– Minimal te to any one programming language
– Focus on dynamic languages and XML-centric approaches such as XPath, XQuery and

XSLT
• Stack/Vendor

– Interoperability, works with clients and services from many systems
– No requirement to have a proprietary system everywhere

• Time
– Asynchronous, non-blocking, scalable

ESB Paterns and Ant-Paterns

• How are ESBs used efectvely
• How are they abused

– High-level paterns
• How the ESB fts into an organizaton
• How the ESB fts into an Enterprise Architecture

– Low-level paterns
• How the ESB fts into a specifc message fow or business problem

The Concentrator Patern

.NET
service

CRM
service

Apache
Axis2

service

C/C++
service

Concentrator ESB
Consistent access, security, logging, audit, monitoring

But no transformaton

Data
service

Mashup/Web Applicaton
Dashboard

The Federated ESB patern

Enterprise ESB
Routng, Audit

Department
ESB

Department
ESB

Department
ESB

The mini-ESB patern

• Use a lightweight ESB
• Co-locate on the same hardware/VM as the service
• Transformaton, polling, protocol translaton, etc
• Why?

– In the control of the team who own the services
– Keeps the SOA model (ownership) with a simple efectve

approach to exposing services

• What about the embedded ESB model?
– e.g. embed transformaton and logging into your Service

Hostng platorm

Actve vs Passive

• The concentrator patern is efectvely passive
– The ESB reacts to messages/requests from the front-end

• Actve ESBs:
– Poll fle systems/FTP/SFTP for updated work
– Actvely call remote services based on tmers
– Integrate passive services

Scenario – Financial Security blocking

Database

legacy
flat file

NEW YORK

Existing
System

WSO2 ESB
Poll

Record->XML
XML->XML

Send

LONDON

WSO2 ESB
Split/Iterate

DBLookup/Filter
Transform to MQ

Send

Existing
System

XML/JMS

Push-Me Pull-You

Push-me Pull-you

Ant-Paterns

• Ant-Patern #1
– Implement all your business logic in the ESB
– Why not?

• Mixing Infrastructure logic and Business Logic
• Maintainability
• Tooling and Skills

• Ant-Patern #2
– Apply waterfall and applicaton deployment approaches to

the ESB
• Long project cycles
• No iteratve approach

– Why not?
• Lose all fexibility and agility
• Once the ESB becomes a statc, code-driven system then you would

be beter of updatng your applicatons

Ant-Patern #3

• “Big Brother”
– The ESB is hosted, managed and controlled by a central IT

team
– Because of organizatonal issues using the ESB is complex:

• e.g.
– It takes months of meetngs to get access
– The Central IT team is trying to recoup the investment and internally

charges $000/year to use the ESB
– The central IT deployment model holds up users

– Departments and divisions actually sneak behind the ESB
• Set up peer-to-peer communicatons
• Avoid the ESB at all costs

The biggest Ant-Patern of all

• Use an ESB because:
– You heard it was a good idea
– The salesman told you that you need one (over a nice

dinner)
– You need a new TLA on your resume/CV
– Its an excuse to spend several months learning and going to

conferences

ESB Market

• Proprietary
– IBM WebSphere
– Oracle/BEA
– Tibco

• Open Source
– Fuse/ServiceMix
– MuleSource/Mule
– WSO2 ESB/Synapse

What about JBI?

• JBI is the JCP/Sun sponsored standard for ESBs
• Allows a standard deployment and also standard

adapters
• Can be seen as a follow-on to JCA
• JBI has had litle market success

– Failed to bring true portability
– Based on a very code-centric deployment model inherited

from J2EE
• JBI v2 was destned to fx those problems but has gone

quiet
• Oracle/Sun acquisiton has also thrown doubt on JBI

Openness

• Since the only standard for portability is fawed, I highly
recommend:
– Using an Open Source ESB

• Avoid lock-in and proprietary approach
– Using open network protocols

• E.g. SOAP, HTTP, XMPP, AMQP
• Avoid lock-in to MQSeries or Tibco

– Use as many standards based approaches as possible
• XSLT, XQuery, E4X/JavaScript, SOAP Headers, WS-Security, WS-RM,

etc

OSGi and ESBs

• OSGi is a pluggability and component model for Java
• Proven to be efectve as the component approach for

Eclipse
• Gaining strong tracton with middleware vendors

– BEA/Oracle
– IBM
– SpringSource
– WSO2

• Both ServiceMix and WSO2 ESB have strong OSGi basis
– ServiceMix Kernel
– WSO2 Carbon OSGi framework

• OSGi looks like a much stronger approach than JBI for
plugging components into middleware runtmes

Understanding an ESB

• I’m an expert on the WSO2 ESB and Apache Synapse
– Both share the same core engine and model

• Scenario walkthrough
• Similar approaches will work with other Open Source

ESBs

Core model of the ESB

• Two main approaches
– “Proxy” approach

• Messages come into a proxy
– Proxy = { inSequence, targetEndpoint, outSequence, faultSequence}
– Sequence = { ordered list of mediators }
– Mediator = Unit of functon

– Rule/Policy based approach
• All messages come to a central sequence

– Sequence categorizes and routes requests based on the message
• Known in Synapse as the “main” sequence

Sequence concept

Built-in Mediators

– Drop (end)
– Sequence (call another

sequence)
– Clone
– Callout (call a WS)
– Filter (if-then-else)
– Switch
– Iterate
– Aggregate
– Send
– Router
– Smooks (transform library)
– Rule (use a Rules engine)
– Enttlement (validate access

against a XACML server)

– Property
– Header
– Validate
– DBReport
– DBLookup
– Class mediator
– Command Mediator
– Script
– Spring
– Throtle
– Cache
– XSLT
– XQuery

Understanding performance

• Performance of an ESB can be critcal
• Key Measurements are

– Throughput (can the ESB cope with the required load)
– Latency (does the ESB add unacceptable tme)
– Concurrency (does the ESB run out of threads)

• Two key technologies
– Streaming and Streaming XML

• Ability to operate in constant memory and handle XML without
building a full tree

– Non-blocking IO
• Ability to manage large numbers of connectons with constant

thread pool

Case Study

• Mobile phone ringtone/media provider
• Every request goes via the ESB

– Performance and Streaming are critcal
– Streaming and non-blocking are key

• Contnuous Availability
– Ability to upgrade the system live
– Without losing transactons
– Under load

Event Driven Architecture

• Event Architecture takes the SOA one step further
towards loose-coupling than the previous paterns:
– Its up to you to publish to the right place
– Its up to you to subscribe to the right events

• You own the wiring too
– Allows for situatonal integraton

• In the previous paterns the wiring was encoded into
the ESB

Eventng in Synapse

Synapse

Proxy

Event
Source

Event
Publisher

Subs
Mgr

Subscriber

Publisher Subscriber

Subscriber

subscribe

Mediaton
Sequence

Event Driven Architecture with a Master Data
Patern

Governance and ESBs

• Governance is a key issue for SOA
• Governance is fundamentally about ensuring standards

around Enterprise IT
– Policies
– People
– Processes

• ESBs can be very important for this
– Policy Enforcement Point
– Monitoring Point
– Central Access Point for enterprise services

Summary

• We have
– Identfed how ESBs ft into a Service Oriented Architecture
– Discussed when to use an ESB and when not to
– Looked at ESB paterns and ant-paterns
– Covered some simple ESB approaches
– Investgated how ESBs can ft into EDA

Questons

Resources

• Reclaiming the ESB
– htp://wso2.org/library/2913

• Open Source SOA (book) by Jef Davis
– htp://www.manning.com/davis/

• htp://en.wikipedia.org/wiki/Enterprise_service_bus
• Apache Synapse

– htp://synapse.apache.org
• WSO2 ESB

– htp://wso2.org/esb

http://wso2.org/library/2913
http://www.manning.com/davis/
http://en.wikipedia.org/wiki/Enterprise_service_bus
http://synapse.apache.org/
http://wso2.org/esb

	ESBs and SOA Paul Fremantle paul@wso2.com CTO and Co-Founder, WSO2 VP, Apache Synapse
	Service Oriented Architecture
	Bus concept
	Busbar
	A common ESB definition
	ESB definition
	Jason Bloomberg, Zapthink
	My definition of an ESB
	Loose Coupling
	Do you need an ESB to do SOA?
	Slide 11
	SOA can end up as spaghetti
	An ESB can simplify SOA deployment
	Pragmatic SOA scenarios
	Apply those rules to an ESB
	ESB Patterns and Anti-Patterns
	The Concentrator Pattern
	The Federated ESB pattern
	The mini-ESB pattern
	Active vs Passive
	Scenario – Financial Security blocking
	Push-Me Pull-You
	Push-me Pull-you
	Anti-Patterns
	Anti-Pattern #3
	The biggest Anti-Pattern of all
	ESB Market
	What about JBI?
	Openness
	OSGi and ESBs
	Understanding an ESB
	Slide 32
	Core model of the ESB
	Sequence concept
	Built-in Mediators
	Understanding performance
	Case Study
	Event Driven Architecture
	Eventing in Synapse
	Event Driven Architecture with a Master Data Pattern
	Governance and ESBs
	Summary
	Questions
	Resources

